Amikacin Minimum Inhibitory Concentrations and Mutational Resistance in Patients With Treatment-Refractory Nontuberculous Mycobacteria Lung Disease Treated With Liposomal Amikacin for Inhalation

Kenneth N. Olivier¹, Gina Eagle¹, John P. McGinnis II, Liza Micic³, Barbara A. Brown-Elliot¹, Richard J. Wallace, Jr⁶

¹National Heart, Lung, and Blood Institute / National Institutes of Health, Bethesda, MD, USA; ²Sponsored Incorporated, Bridgewater, NJ, USA; ³The University of Texas Health Science Center at Tyler, Tyler, TX, USA.

INTRODUCTION

- Nontuberculous mycobacterial (NTM) lung infections are increasing globally in both men and women.¹
- NTM lung infections are often chronic and may be refractory to current guideline-based antibiotic therapy.²
- Liposomal amikacin for inhalation (LAI) is a novel formulation of amikacin in development for the treatment of NTM lung infections.³
 - LAI is composed of charged, highly biocompatible liposomes (~0.3 µm) that encapsulate charge-positive amikacin for delivery through pulmonary mucociliary transport.
 - The high lung concentration and extended release of amikacin from liposomes enable once-daily dosing of LAI.
- The efficacy, safety, and tolerability of once-daily LAI were recently evaluated in a phase 2, randomized, double-blind, placebo-controlled study of patients with treatment refractory NTM lung infections (Study TRU-012, ClinicalTrials.gov identifier: NCT01813256).

AIMS

- To evaluate mutational resistance in patients with Mycobacterium avium complex (MAC) or Mycobacterium abscessus (Mabs) (Mycobacterium) lung infection who received LAI and the correlation between LAI administration and a mutation in the 16S rRNA gene, which encodes the ribosomal RNA component of the ribosome.
- To evaluate the relationship between the minimum inhibitory concentrations (MIC) of MAC or Mabs and the presence of a mutation.

METHODS

Study Design

- Study design is summarized in Figure 1.
- Study TRU-012 is the first, randomized, placebo-controlled, multicenter clinical trial in patients with NTM lung disease, conducted in 19 sites in North America.
- The study assessed the efficacy, safety, and tolerability of LAI 590 mg once daily vs. placebo in patients with treatment-refractory NTM on a stable multidrug regimen.
- In the 84-day double-blind period, patients were randomized 1:1 to LAI 590 mg pc or placebo once daily via a customized investigational ventilator (rFlow technology nebulizer (PART Pharma GmbH)) added to their ongoing, stable drug regimen.
- Participants continuing on ATS/IDSA guideline-based therapy.

Study Population

- Patients were eligible for enrollment if they had pulmonary NTM infection refractory to American Thoracic Society / Infectious Diseases Society of America (ATS/IDSA) guidelines-based therapy for 5 months prior to screening.
- Patients were stratified by the presence or absence of cystic fibrosis, and by the presence of MAC vs. Mabs infection.

Study Procedures

- Amikacin MICs were assessed by broth microdilution assay.

RESULTS

- Of the 178 patients evaluated, 90 were randomized, 89 were in the modified intent-to-treat (MITT) population (44 LAI, 45 Placebo) and 108 completed treatment in the double-blind phase and 59 completed treatment in the open-label phase.

SUMMARY AND CONCLUSIONS

- LAI and placebo addition increased the proportion of patients who were culture-negative for NTM to 54.6% and 34.2%, respectively.
- There was a very high correlation between an MIC >64 and the presence of a mutation.

ACKNOWLEDGMENTS

- The authors acknowledge Dale Dugay, PhD, of Connexion Healthcare (Newtown, PA) for providing medical writing support.

DISCLOSURES

- Kenneth N. Olivier is supported by the Division of Intramural Research of the NHLBI-NIH, and had a Competitive Research and Development Agreement between Incepta Incorporated and NAID/NHL. Gina Eagle, John P. McGinnis II, and Liza Micic are employees of Incepta Incorporated. Barbara A. Brown-Elliot is a Supervisor of the Micobacteriology S QA Laboratory at The University of Texas Health Science Center, which performed mycobacterial identification and susceptibility testing for this study. Richard J. Wallace, Jr is Director of the Micobacteriology Laboratory at The University of Texas Health Science Center, which performed molecular and microbiological testing for this study.