INTRODUCTION

• Pneumococcal meningococcal infections represent a significant treatment challenge.1
• Liposomal amikacin for inhalation (LAI) is novel, once-daily formulation of amikacin in development for the treatment of meningococcal infections.2
• LAI is composed of charge-neutral, highly biocompatible liposomes (0.3 μm) that encapsulate multicationic amikacin (Figure 1), which are delivered via a nebulizer. These liposomes are mostly taken up by pulmonary macrophages in vitro.3

METHODS

LAI was prepared by Inhaled Incorporated using a proprietary manufacturing process.32 Stills, Sprague-Dawley rats were randomized into 3 groups: group 1 (n = 24) was exposed to an aerosolized solution of amikacin sulfate at a targeted amikacin dose of 90 mg/kg; group 2 (n = 24) was exposed to LAI at a targeted amikacin dose of 90 mg/kg, and group 3 consisted of 8 rats that were used as controls, receiving no inhalation treatment. Rats were exposed to nebulized drugs over a period of 70-90 min using a PARI LC Plus nebulizer (80% of nebulized solution delivered to the lungs). Groups 1 and 2 were euthanized at 24 h, 7 days, and 14 days after dosing. Group 3 was euthanized immediately after dosing and at 7 days, 3 days, 7 days, 14 days, or 21 days after dosing. Control rats were euthanized immediately after dosing and at 1 hour, 4 hours, 24 hours, 3 days, 7 days, 14 days, and 21 days after dosing. Control rats were euthanized immediately after dosing and at 1 hour, 4 hours, 24 hours, 3 days, 7 days, 14 days, or 21 days after dosing. Control rats were euthanized immediately after dosing and at 1 hour, 4 hours, 24 hours, 3 days, 7 days, 14 days, or 21 days after dosing. Dosing was conducted by asphyxiation immediately after dosing (t = 0) and at 1 hour, 4 hours, or 24 hours after dosing, as shown. The animals treated with LAI were examined with a Nikon Eclipse Ti fluorescence microscope (Nikon Instrument Inc, Melville, NY) at 510-560 nm (excitation) and ≥590 nm (emission) for fluorescently stained amikacin.4

RESULTS

The distribution and elimination of amikacin remaining in the lungs following a single 90 mg/kg dose of LAI or inhaled amikacin sulfate solution were consistent throughout different lung lobes/sections.

CONCLUSIONS

• LAI-treated rats exhibited a 2-fold increase in the concentration of amikacin remaining in the lungs (AUC; Figure 2) and AUC₀₋₂₄ h and approximately a 2-fold increase in elimination half-life (t₁/₂) compared with rats receiving amikacin sulfate solution. Almost double of the initial amikacin measured in the lungs (31%) of LAI-treated rats remained in the lungs 24 hours after dosing compared with 18% for amikacin sulfate solution–treated rats.

Macrophages loaded with amikacin were localized primarily in the lumen of small airways (yellow arrows) during the first 24 hours after LAI administration. After 3 days, most of the fluorescent macrophages in the airways disappeared, with a concomitant increase in the number of fluorescent macrophages in interstitial lung tissue.5

REFERENCES

ACKNOWLEDGMENTS

The authors would like to acknowledge Connexion Healthcare (Newtown, PA) for providing editorial, layout, and design support. Inhaled Incorporated, Westwood, NJ, provided funding to Connexion Healthcare for these services.

DISCLOSURES

All authors are employees of Inhaled Incorporated.

Poster: A5482

Vladimir Malinin1, Mary Neville2, Walter R. Perkins3

Inhaled Incorporated, Bridgewater, NJ, USA

* Died January 14, 2014

Biodistribution and Clearance of Liposomal Amikacin for Inhalation and Free Amikacin After a Single-Dose Inhalation in Rats

Lungs of LAI-treated rats released diffuse staining immediately after dosing and increased intracellular (macrophage) staining over time; lungs of amikacin sulfate solution–treated rats showed a very diffuse staining pattern immediately after dosing, which disappeared after 1 hour.

Graphical representation of LAI liposomes encapsulating amikacin

Figure 1. Red and green immunofluorescent staining of caudal lobe tissue sections in rats following a single 90 mg/kg dose of inhaled LAI (purple and green, respectively) or amikacin sulfate solution (red and green, respectively). Images correspond to lung samples taken immediately post-dosing (IPD) at 1 hour, 4 hours, or 24 hours after dosing, as shown. The stained sections were examined with a Nikon Eclipse Ti fluorescence microscope (Nikon Instrument Inc, Melville, NY) at 510-560 nm (excitation) and ≥590 nm (emission) for fluorescently stained amikacin.

Table 1. Lung and Serum Amikacin Concentrations in Rats Following a Single Exposure (90 mg/kg) to LAI or Amikacin Sulfate Inhalation

<table>
<thead>
<tr>
<th>Property</th>
<th>Treatment</th>
<th>Lung</th>
<th>Serum</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC₀₋₂₄ h (μg/ml)</td>
<td>LAI</td>
<td>12067</td>
<td>466</td>
</tr>
<tr>
<td></td>
<td>Amikacin</td>
<td>5916</td>
<td>96</td>
</tr>
<tr>
<td>AUC₀₋₂₄ h (μg/ml)</td>
<td>LAI</td>
<td>12065</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Amikacin</td>
<td>4240</td>
<td>1628</td>
</tr>
<tr>
<td>C₀ (μg/mL) at sacrifice</td>
<td>LAI</td>
<td>1159</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Amikacin</td>
<td>460</td>
<td>312</td>
</tr>
<tr>
<td>C₀ (μg/mL or ml of sample)</td>
<td>LAI</td>
<td>132</td>
<td>3</td>
</tr>
</tbody>
</table>

| 1/2 τₘ (min) | LAI | 0.36 | 3 |

AUC₀₋₂₄ h, area under the curve from 0 to 24 hours; C₀, concentration; τₘ, half-life; ISD, insufficient data to calculate the parameter; LAI, liposomal amikacin for inhalation; t₀₋₅₀₄, trough concentration; IPD, immediately post-dosing; LAI, liposomal amikacin for inhalation.

Figure 2. Comparison of pulmonary amikacin concentrations in the lungs of rats after a single administration of LAI and inhaled amikacin sulfate solution at a targeted dose of 90 mg/kg. Rats were exposed to nebulized drugs via a mouse-only inhalation system.